ANASTO Québec 2016

Transportation Technology

- Allen Biehler Carnegie Mellon University
- Michael Cammisa Association of Global Automakers
- Susan Martinovich CH²M
- Jean-Francois Barsoum Smarter Cities IBM

Carnegie Mellon University

Carnegie Mellon University UNIVERSITY OF PENNSYLVANIA

ANASTO Québec 2016

Connected and Automated Vehicles

Transformation in Mobility

Allen Biehler June 6, 2016

Major Transportation Changes

✓ Personal car

 Zipcar – internet, wireless technology + on-line payment

Real-time knowledge of all modes – seamless connectivity

- ubiquitous smart phones
- collaboration of people
- data assets
- technology platforms

SubscriptionPersonal cars as taxis• Laga Transit or Charioot in San Charioot in San Charioot• Lyft• Bridig• Uber• Bridig• Uber• Dynamic vanpools• Company shuttles• Via in New York• Congen shuttles

When?

- ✓ Driverless cars by 2020 (Cadillac, Tesla, Google, Volvo, Audi, Mercedes-Benz and Nissan)
- ✓ Fully driverless vehicles by 2025 (Boston Consulting Group)
- ✓ Driverless trucks and cars by 2026-2030 (European Road Transport Research Council)

Automated Vehicle Issues

- ✓ Technical
- Regulatory
- Operating
- ✓ Policy

Only 6% of big US cities are planning or thinking about automated vehicles.

National League of Cities

Big issues

- Death toll nearly 3,000/mo. in US
- \$230 billion in annual accident cost
- 30% of urban land in US devoted to parking and roadways

Big issues

- 50 billion gallons of gasoline imported
- Cars & trucks produce
 80% of transportation
 carbon emissions
 - By 2050, there could be 10 million more vehicles in US urban areas

Potential Outcomes

- One shared autonomous vehicle (SAV) could replace 9 conventional vehicles (Kockelman et al, University of Texas)
- SAV's in cities could result in one-fifth the number of cars (Carlo Ratti, SENSEable City Lab, MIT)
- SAV's could reduce traffic or make cars cheaper and increase traffic (Marshall Brown, Illinois Institute of Technology)

Potential Outcomes

- Driverless technology will facilitate electric vehicles.
- More affordable housing if reduce parking requirements.
- ✓ More independent mobility for people with low incomes.

"Stop adding highway lanes and more parking lots. Instead build ideal driverless urban environment"

(Gabe Klein)

Actions to Consider

✓ Roadway design

- Narrower lanes and cartways
- Special lanes for driverless vehicles
- Curbside design for heavier pick-ups & drop-offs
- Pedestrian and bicycle safety design
- Eliminate curbs

Actions to Consider

- ✓ Parking
 - Reduce or eliminate on-street / off-street parking
- ✓ Transit
 - Continue investment in fixed-route, fixed guideway
 - Accommodate microtransit providers
 - Stop and station design
 - Service integration

Actions to Consider

✓ Urban design

- Consider driverless car pockets within cities.
- Capture up to 90% of urban land devoted to roadways and parking.
- Lower or eliminate parking requirements for developments.

